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We have studied the evolution of grid turbulence in a planar contraction by focusing
on the flow at the centre symmetry plane. Measurements are carried out in water
with inlet Taylor-microscale Reynolds number varying from 51 to 99. Detailed laser-
Doppler anemometry measurements show that the streamwise fluctuating velocity
component for contraction ratio C < 2.5 closely follows the decay of grid turbulence
in a straight channel. Furthermore, the turbulent kinetic energy reaches a minimum
value in the range of contraction ratio 1.5 <C < 2.5. Turbulent intensity, independent
of contraction angle and Reynolds number, decays exponentially. The results show
that the flow reaches its peak of anisotropy at 2.5 <C < 3.5 and then returns to a
nearly fully isotropic state inside the contraction. The return to isotropy within the
contraction is attributed to the rapid part of the pressure–strain correlation term in
the transport equation of the Reynolds-stress anisotropy tensor.

1. Introduction
Turbulent flow in contractions occurs in many industrial processes and applications.

In addition, the effect of contractions on turbulence is of importance for wind-
tunnel design, general turbulence research, and turbulence modelling (e.g. Lumley &
Newman 1977; Sjögren & Johansson 1998; Choi & Lumley 2001). Therefore, it is
of both fundamental and industrial interest to study the effect of contractions on
turbulence.

Assuming isotropic turbulence consists of cylindrical vortices randomly oriented in
different directions, vortices with axis perpendicular to the flow direction produce the
streamwise velocity fluctuations. Non-streamwise velocity fluctuations are generated
by vortices aligned in the flow direction. In a contraction flow, vortices are stretched
and aligned in the streamwise direction. Therefore, because of the conservation of
angular momentum, it is expected that the intensity of the non-streamwise fluctuating
velocity components increases while that of the streamwise component decreases.
Applying Kelvin’s circulation theorem to predict the intensity of vortices in an
axisymmetric contraction, Prandtl (1933) has shown that this hypothesis is consistent.
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Figure 1. Schematic of the experimental set-up with the coordinate system.

If U1 + u1, U2 + u2 and U3 + u3 denote the instantaneous fluid velocity components
(figure 1) and lower-case and capital letters denote the fluctuating and mean velocity,
respectively, Prandtl’s approach for axisymmetric contractions can be written as
u1 ∝ 1/C and u2, u3 ∝

√
C, where C denotes the contraction ratio defined as

C = U1/U1,0, and U1,0 being the inlet streamwise mean velocity.
The initial Taylor model (1935) has been extended by integrating over all

wavenumbers (Ribner & Tucker 1953; Batchelor & Proudman 1954). In this model,
the convective time scale is assumed to be much smaller than the eddy interaction
time scale and, therefore, it is referred to as the ‘rapid distortion theory’ (RDT).

Experimental investigations of flow in axisymmetric contractions show that the
rapid distortion theory correctly predicts the turbulent flow variation for contraction
ratios C < 4 (Uberoi 1956; Hussain & Ramjee 1976). According to these studies
initially isotropic turbulence becomes increasingly anisotropic up to C = 4 followed
by a decrease in anisotropy. It is also shown that RDT significantly underpredicts
the streamwise r.m.s. velocity component for C > 4. Tsuge (1984) found that small
eddies decay through the contraction in agreement with RDT; however, large eddies
are amplified due to vortex stretching.

Although some aspects of flow through axisymmetric contractions such as their
influence on the velocity and thermal fluctuations (Uberoi 1956; Warhaft 1980), the
effect of their shape on turbulence characteristics (Hussain & Ramjee 1976) and
return to the isotropic state downstream of the outlet (Lumley & Newman 1977;
Choi & Lumley 2001) have been studied, a thorough investigation of flow through
planar contractions (figure 1) has not been performed thus far. Flow in channels
with plane distortion (e.g. Tucker & Reynolds 1968; Gence & Mathieu 1979, 1980)
cannot represent aspects of flow in planar contractions, characterized by a variable
irrotational rate of strain at the centreplane. This paper aims to answer questions
such as how turbulence characteristics of homogeneous turbulence vary in planar
contractions and how parameters such as contraction angle, Reynolds number, inlet
turbulence conditions and C, influence the development of turbulent flow in planar
contractions. Experiments by Uberoi (1956) and Hussain & Ramjee (1976) revealed
that inside axisymmetric contractions, the homogeneous turbulence reaches its peak of
anisotropy, and then it starts to return to isotropy. Can the rapid part of the pressure–
strain rate term become large enough in planar contractions so that the return to
isotropy starts inside the contraction and even reaches the fully isotropic state within
the contraction? In order to address these questions, we present results for turbulent
flow in a planar contraction with isotropic, homogeneous grid turbulence and uniform
streamwise velocity profile at the inlet. The grid position is changed relative to the
inlet in order to determine the influence of the inlet turbulent intensity. The effects
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Rem lr u′
1 [m s−1] u′

1/U1,0 ε [m2 s−3] Rλ(≡ u2
1[15/(νε)]1/2) RΛ(≡ u′

1Λ/ν) η [mm]

4.5 × 103 20 0.027 0.055 0.003 51 170 0.13
9.0 × 103 20 0.053 0.054 0.012 99 636 0.10
4.5 × 103 60 0.013 0.027 1.4 × 10−4 55 182 0.17

Table 1. Flow parameters at C =1.05 for three selected experiments; ε, λ, Λ and η(≡ (ν3/ε)1/4)
denote dissipation rate, Taylor microscale, integral length scale and Kolmogorov length scale,
respectively; the prime on u′

1 denotes the root-mean-square value.

of contraction angle and moderate change of Reynolds number are also studied. The
results are presented in terms of the development of the normal components of the
anisotropy tensor and its second-moment invariant.

2. Experimental set-up
The experiments are carried out in a closed water loop. The test section is

constructed of 12 mm thick Plexiglas to allow visual access. In order to introduce an
isotropic homogeneous flow at the inlet, flow first passes through a hexagonal flow
straightener (Honeycomb) installed in a constant-cross-section channel, figure 1. The
flow straightener has an open width of 10 mm and a closed width of 0.4 mm. Free-
stream turbulence is then generated by a monoplane square grid with rectangular bars.
The mesh size, M , and bar width of the grid are 9.5 mm, and 3.2 mm, respectively,
resulting in a solidity of 0.56. The turbulent intensity at the contraction inlet can
be varied by repositioning the grid relative to the contraction inlet. This distance is
normalized by M , and is denoted by lr . In order to achieve homogenous isotropic
turbulence at the contraction inlet, the grid is located at least 20 mesh sizes upstream
of the contraction inlet. The contraction is 550 mm long, 155 mm wide (w) with inlet
height h0 = 179.2 mm (see figure 1). The contraction half-angle, β , and the maximum
contraction ratio, Cmax , are varied by changing the outlet height. The mesh Reynolds
number, Rem, is based on the mesh, M , and the mean velocity at inlet, U1,0. By
changing the flow rate, the value of Rem is varied from 4.5 × 103 to 9.0 × 103, giving
inlet velocities ranging from 0.47 to 0.94 m s−1. The summary of flow parameters for
three cases with β = 8.4◦ is presented in table 1.

A two-component LDA system (TSI) with a 5 W argon ion laser (Coherent, Innova
70) is used to measure the velocity field. Alumina particles, 0.3 µm in diameter, are
used to seed the flow. The optical head is traversed automatically using a three-
dimensional linear traversing system with accuracy of ±0.1 mm. The LDA data are
collected randomly with 5 repetitions for a period of 90 s.

3. Theoretical background
Analogous to Prandtl’s (1933) approach for axisymmetric contractions, the

conservation of circulation applied to a fluid element in a planar contraction (figure 1)
gives u′

1 ∝ 1/C, u′
2 ∝ C, and u′

3 ∝ 1, suggesting a monotonic decrease in the
streamwise r.m.s. velocity component; the prime denotes root-mean-square (r.m.s.)
hereafter. However, according to the rapid distortion theory (RDT), for distortions
in a planar contraction, the non-streamwise normal stress components at large C are
approximated as

u′
2, u

′
3 ∝

√
C, (3.1)
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Figure 2. Distribution of u′
1 (◦) and u′

2 (×) along (a) the x2-axis at x3 = 0 and x1 = 0, (b) the
x3-axis at x2 = 0 and x1 = 0, normalized by the values at x1 = 0, x2 = 0 and x3 = 0 for
Rem = 4.5 × 103, lr = 20; the prime on u′

1 and u′
2 denotes the root-mean-square value.
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Figure 3. Mean streamwise velocity profile (a) along the x2-axis at x3 = 0, (b) along the x3-axis
at x2 = 0 at C = 1.2, 1.6, 2.8 and 9.0 (bottom to top) for Rem = 4.5 × 103 (◦), Rem = 6.7 × 103

(•), Rem = 9.0 × 103 (+).

which is similar to Prandtl’s formulae for axisymmetric contractions, as stated in § 1.
The prediction by RDT is more accurate since it accounts for mutual interaction of
vortices.

It is important to our study to have nearly isotropic turbulence at the contraction
inlet. Grid-generated turbulence tends to have slightly higher energy content in
the streamwise direction. Comte-Bellot & Corrsin (1966) used an axisymmetric
contraction with Cmax = 1.27 to suppress the streamwise r.m.s. velocity and, therefore,
to obtain perfect isotropic turbulence. Our experiments show that at the core of the
contraction inlet, the difference between r.m.s. velocity components is ± 5 % or smaller
and, thus, the turbulence is nearly isotropic. Moreover, the spatial variation in r.m.s.
velocity components at x1 = 0 is within ± 7 % as shown in figure 2, demonstrating
nearly homogeneous turbulence.

The streamwise mean velocity profile along the x2-axis at x3 = 0, figure 3(a), and
along the x3-axis at x2 = 0, figure 3(b), is uniform everywhere in the contraction. If the
effect of the sidewalls is neglected, the contraction can be considered two-dimensional,
where U3 and ∂(· · ·)/∂x3 are negligible. The mean velocity gradient tensor, is written
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as

∂Ui

∂xj

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂U1

∂x1

∂U1

∂x2

≈ 0
∂U1

∂x3

≈ 0

∂U2

∂x1

−∂U1

∂x1

0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

The x1- and x2-components of the mean vorticity vector are negligible everywhere,
and the x3-componnet, given by ω3 = ∂U2/∂x1, is zero at the centreplane due to
geometrical symmetry. Also, U2 is zero at the centreplane because of symmetry.

In the following sections, the results of this study are evaluated in terms of the
Reynolds-stress anisotropy tensor defined by (Lumley & Newman 1977)

aij =
uiuj

K
− 2δij

3
, (3.3)

where K ≡ uiui/2 is the turbulent kinetic energy.
In isotropic turbulence, all normal components of this tensor vanish identically.

The transport equation for aij is given by

Daij

Dt
= Pij +

1

K

(
Π

(r)
ij + Π

(s)
ij

)
− ε

K
(eij − aij ) + Dij , (3.4)

where Pij is the production of aij , and eij is the dissipation-rate anisotropy tensor
defined as eij = εij /ε − 2δij /3, where ε is the dissipation rate per unit mass. In this
equation, Pij can be obtained exactly; however, the other terms need to be modelled.
Here, the diffusion term Dij =0 because of the homogeneity in the turbulence. The
superscripts (r) and (s) denote the rapid and the slow parts of the pressure–strain
rate, respectively. When the velocity gradient is large, the rapid part is the dominating
term; its interplay with Pij determines the state of isotropy. However, when the
velocity gradient is zero and, thus, Pij =0, the state of isotropy is governed by Π

(s)
ij

and eij . In general, it is difficult to directly measure the pressure–strain rate correlation
(Sjögren & Johansson 1998). However, by measuring other terms in equation (3.4),
this term can be computed. In § 4, we also present the data in terms of the invariants
of the anisotropy tensor (Lumley 1970, 1978), given by II = aijaji and III = aijajkaki .

4. Results
In order to quantify the effect of contraction on turbulence, we compare the

evolution of grid turbulence in a contraction with reference to a straight channel.
A model for decay of grid turbulence which is experimentally validated is given by
u′

1/U1,0 ≈ 1.1
(
tU1,0/M

)−0.61
(Sirivat & Warhaft 1983; Mydlarski & Warhaft 1996)

where t is time. An earlier model developed by Frenkiel (1948) and verified
experimentally by Roach (1987) is based on the bar dimensions, given by

u′
1

U1,0

= c◦

(
tU1,0

d

)−5/7

, (4.1)

where d is the bar width and c◦ is a constant based on the grid geometry and Rem.
We have compared equation (4.1) with our data. As shown in figure 4(a), this model
agrees with our data up to t ≈ 32M/U1,0 (corresponding to C ≈ 2.5) when c◦ = 1.13;
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Figure 4. (a) Variation of u′
1/U1,0 for Rem =4.5 × 103 and lr = 20 (+) compared to equation

(4.1) (—) and based on the exponentially decaying function e−1.6C ∗
(− − −). (b) Integral length

scale for Rem = 4.5 × 103 (+), Rem = 9.0 × 103 (◦) and Λ ∼ t0.5 by Roach (1987) (—).

here t is time of travel measured from the inlet to the contraction at lr = 20. This
comparison suggests that for C < 2.5, the production of turbulent energy is negligible.

According to Roach (1987), the Eulerian length scale, Λ, of grid turbulence scales
as Λ ∼ t0.5. In this study, we estimate (see Parsheh, Brown & Aidun 2005) the values
of Λ in the contraction using Taylor’s approximation. The variation of Λ is shown
in figure 4(b), where Λ0 denotes the value at C =1.1. Our results are consistent
with the rapid distortion theory and the results obtained by Warhaft (1980) in
an axisymmetric contraction with the maximum contraction ratio of Cmax = 4. In
both cases, the Eulerian length scale decreases slightly up to C ≈ 3.0 for the planar
contraction (figure 4b), and to C ≈ 4.0 in the axisymmetric contraction, as discussed
by Warhaft. At C > 3, our results show a rapid increase in Λ compared to the straight
channel due to the stretching of large eddies in the contraction, as predicted by Tsuge
(1984).

The streamwise turbulent intensity along the centreline, T1 = u′
1/U1, for various cases

with different contraction half-angle, Reynolds number and inlet turbulent intensity
has been shown to decay exponentially along the contraction (Parsheh et al. 2005). It
has also been shown that T ∗

1 ≡ (T1 −T1,e)/(T1,0 −T1,e) in all cases collapses around the
same curve proportional to e−1.6C ∗

, where C∗ = C − 1 and T1,0 and T1,e are the values
of T1 at inlet and outlet, respectively. This function is shown in figure 4(a) where it is
compared to the measured results and relation (4.1).

The r.m.s. velocity components, figure 5(a), attain minimum values at C ≈ 2
unlike axisymmetric contractions where the minimum occurs at C ≈ 4 (Uberoi 1956:
Hussain & Ramjee 1976; Tsuge 1984). Also, the turbulent kinetic energy has a
flat minimum at 1.6 <C < 2.2. The total uncertainty in the measured instantaneous
velocity (error bars in figure 5a) consists of the uncertainty in the x1-position due
to the initial alignment at the origin and due to the horizontal misalignment, and
the random errors associated with the LDA measurements (see for more details
Brown 2005). As shown in figure 5(a), the position of the minimum in u′

1 varies
from C ≈ 2.1 to C ≈ 1.7 when the location of the grid is changed from lr =20 to
lr = 60, decreasing the inlet turbulent intensity by a factor of roughly two. This shows
that the effect of the contraction on the turbulence is highly dependent on the inlet
conditions, consistent with the results for axisymmetric contractions by Hussain &
Ramjee (1976). This can be attributed to the negligible production of kinetic energy
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at C < 2 discussed above. Figure 5(b) shows the change of Reynolds number based on
the Taylor-microscale Reynolds number, Rλ ≡ u2

1[15/(νε)]1/2; the method by which ε

is estimated is discussed below in this section.
The presence of a minimum value of K can be explained based on the production

of turbulent kinetic energy. Considering the flow at the contraction centreline with the
deformation tensor given by (3.2) with ∂U2/∂x1 = 0 due to symmetry, the production
of kinetic energy is zero in the x3-direction, negative in the streamwise direction
and positive in the x2-direction (see Parsheh et al. 2005). The production of K is
half the sum of the three components. Thus, for nearly isotropic turbulence at the
inlet the production of energy is small, as shown and discussed above. As a result,

DK/Dt < 0 because of energy dissipation. Close to C = 2, where u2
2 > u2

1, there is a

finite production of kinetic energy given by (u2
2 − u2

1)∂U1/∂x1. At this region, the rate
of dissipation reaches a minimum (as will be shown later) which is balanced by the
production term and thus DK/Dt =0. From this point on, ∂U1/∂x1 becomes large
and therefore the production of energy is larger than the rate of dissipation. The
increase in u′

1 is most likely due to the redistribution of energy between components.
Since LDA signals are sampled randomly in time, we have used the refined sample-

and-hold reconstruction method by Nobach, Müller & Tropea (1998) to estimate the
power spectral density. The spectra estimated by this method have been shown to be
in good agreement with the actual spectra measured by hot-wire anemometry, Nobach
et al. (1998). The estimated one-dimensional spectra in the x1- and x2-directions at
different contraction ratios are shown in figures 6(a) and 6(b), respectively. These
spectra are shown as a function of frequency, f , and are normalized so that the area
under all curves is equal to unity. Therefore, these figures show the influence of the
contraction on each fluctuating scale instead of the amplitude. Consistent with the
results for axisymmetric contractions (Warhaft 1980), the spectrum in the x2-direction
is not affected significantly by the contraction while the u1-spectrum peaks at a higher
frequency at larger C (Warhaft 1980 and the references therein, and the RDT by
Ribner & Tucker 1952). It should be noted that the amplitude of the power spectra
decreases for C < 2.5 in agreement with RDT and thereafter increases gradually (not
shown here). The one-dimensional spectrum considered in the form of κ1F11(κ1),
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where κ1(≡ 2πf/U1) is the streamwise wavenumber, has a peak, max(κ1F11), at κ
p

1 .
Our data show that the value of κ

p

1 decreases with C when C > 3.0 and does not
change significantly when C < 3.0. Warhaft (1980) argues that κ

p

1 at max(κ1F11) is
a measure of the integral length scale. This implies that the integral length scale
should significantly increase when C > 3.0, which is consistent with the results shown
in figure 4(b).

Measurement of energy dissipation rate, ε, contains some uncertainties (Burattini,
Lavoie & Antonia 2005). Assuming local isotropy, ε can be approximated by

ε = 15ν

(
∂u1

∂x1

)2

. (4.2)

In grid turbulence, Sirivat & Warhaft (1983) showed that the estimated ε based on
equation (4.2) agrees well with the estimate from the scaling law. In grid turbulence,
ε can be estimated directly from the decay rate of the turbulent kinetic energy, given
by

ε = −DK

Dt
. (4.3)

Warhaft (1980) used equation (4.3) to estimate the dissipation rate upstream and
downstream of an axisymmetric contraction with Cmax =4, in agreement with ε

deduced from the peak of the three-dimensional energy spectrum. However, we
cannot use this expression everywhere in the contraction since K increases for C > 2,
figure 5(a). In the forced direct numerical simulation (DNS) of Alvelius (1999), it
is shown that the relationship between the wavenumber at the end of the inertial
subrange, κinert, and ε is given by

ε ≈ ν3

(0.1/κinert)4
. (4.4)

In this study, we have used equation (4.2) to estimate the dissipation rate. However,
if the flow is not fully isotropic the ε calculated by this method becomes inaccurate
(Burattini et al. 2005). Therefore, in order to verify the accuracy of the calculated ε,
we compare the results to other methods. For C < 1.3, we have observed that the ε

estimated by equation (4.2) agrees with the velocity decay law estimate, equation (4.3).
At C = 2.2, where DK/Dt =0, the value of ε and the production of the kinetic energy
are in balance. For C > 4.4, ε calculated from (4.2) and from (4.4) are in agreement.
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Considering that for C < 4 a clear inertial subrange does not exist due to small
RΛ, we cannot obtain accurate values for ε for 2.2 <C < 4.4. As shown in figure 7,
the dissipation rate reaches a minimum (figure 7a) and the Kolmogorov length scale,
η(≡ (ν3/ε)1/4), and time scale, τ (≡ (ν/ε)1/2), approach a maximum (figure 7b) at C ≈ 2
where RΛ is at a minimum value (this is not shown here).

According to the rapid distortion theory, contraction shape has no significant
influence on the turbulence. Hussein & Ramjee (1976) verified this using four different
axisymmetric contraction shapes. We study the effect of shape in planar contractions
by analysing the influence of contraction angle, β , on the development of r.m.s.
velocity components. This is done by varying the outlet height and keeping the grid
at lr = 20 and other parameters unchanged. Figures 8(a) and 8(b) show the results
for contractions with Cmax = 7.3, Cmax =11.2 and Cmax = 16.7 with corresponding
angles β = 8.15◦, β =8.4◦ and β = 8.8◦, respectively. Although the difference in angle,
β , appears to be small, the total convective acceleration at the contraction outlet
when β = 8.8◦ is more than two times larger than that when β = 8.15◦. As shown in
figures 8(a) and 8(b) the fluctuating velocity components collapse around the same
curve implying that turbulence variation with C is independent of β (the x3-component
is not shown here). Since the difference in the residence time in these cases is small,
it is impossible to verify the dependence of turbulence level on residence time. The
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effect of residence time should be more pronounced when Rem is varied. This is done
by changing only the flow rate and positioning the grid at lr = 20. Figure 9 shows that
the variation of r.m.s. velocity is nearly universal for all cases (x3-component is not
shown here). This implies that moderate changes in Rem and, therefore, residence time
do not significantly influence the turbulence in planar contractions. This is consistent
with results from Ramjee & Hussain (1976) who have shown that a change of Rem

by a factor of 10 does not significantly influence the turbulence.
The tendency of returning to isotropy has been observed in various experimental

investigations only when the flow is relaxed from the axial strain (e.g. by Tucker &
Reynolds 1968; Gence & Mathieu 1980). Prandtl’s formulae and the rapid distortion
theory suggest that turbulent flow in contractions becomes highly anisotropic at large
C. Our measurements show that in a planar contraction flow starts to return to the
isotropic state at C > 3.5. According to figure 10(a), nearly isotropic turbulence at
the inlet reaches its peak of anisotropy for 2.5 <C < 3.5 and moves towards a fully
isotropic state further downstream. Figure 10(a) clearly shows that a22 loses energy to
a11 while the flow returns to the isotropic state. In addition, at large C the difference
between a22 and a33 becomes small and within the range of the experimental error.

The return to isotropy can be partly attributed to the fact that at large C the
fluctuations in the x2- and x3-directions are produced by the same vortices with axis
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aligned in the x1-direction as predicted by rapid distortion theory, equation (3.1)
(Batchelor & Proudman 1954). According to (3.4) the balance between the rapid
pressure–strain term and the production of aij determines the state of isotropy.
Furthermore, figure 10(a) implies that at C ≈ 4 the balance between P11, which is
negative, and Π

(r)
11 turns in favour of Π

(r)
11 . In the models available for Π

(r)
11 (Launder,

Reece & Rodi 1975), this term is proportional to ∂U1/∂x1, which in the planar
contraction increases sharply for C > 4. Thus, we conclude that the large irrotational
rate of strain at this region is responsible for this interesting phenomenon. In keeping
with previous studies of return to isotropy, we project our results in the anisotropy
invariant map, (II , III )-plane (Lumley 1978), along the contraction as shown in
figure 10(b). The results clearly show the rapid increase of the second invariant
followed by a gradual return to an almost fully isotropic state, consistent with figure
10(a). This view of the results shows the characteristics of the present data, compared
to other turbulent flows.

5. Conclusion
The fluctuating velocity components of flow in planar contractions, in the range of

convergence angles and Rem considered in this study, go through a minimum value
at C ≈ 2. The downstream position of this minimum can be compared to that of
axisymmetric contractions where the minimum occurs at C ≈ 4. We show that the
streamwise location of the minimum does not depend on the contraction angle or
the Reynolds number. In general, we have shown that the Reynolds number and the
contraction angle have an almost negligible influence on the variation of turbulent
velocity components with C.

Turbulent intensity throughout the contraction depends significantly on the grid
position and, thus, the inlet turbulence level. This is attributed to the small production
of turbulent energy at C < 2 and large convective acceleration at C > 2 which offsets
the production of energy. Thus, we conclude that contraction ratio and inlet turbulence
level are the only parameters which significantly affect the turbulence level in the
contraction.

The highly anisotropic flow starts to return to the isotropic state at C ≈ 4 and
becomes almost isotropic at C ≈ 8. This is probably due to the redistribution of kinetic
energy between different components by rapid pressure–strain rate correlation in
addition to the fact that turbulent energy in the x2- and x3-directions is produced by the
same vortices. It is important to note that the return to isotropy in planar contractions
starts at C ≈ 4, occurring much earlier than that in axisymmetric contractions.

Now, the question is whether the existing models for the rapid pressure–strain term
can correctly model highly accelerating and also straining flows. Tsuge (1984) argues
that when the flow has a finite spatial inhomogeneity (e.g. at large C because of
increase of the size of large eddies) proposed models should consider the distribution
of energy at different wavenumbers. The widely used model for the rapid pressure-
correlation term by Launder et al. (1975) has been calibrated for different flows such
as shear flow, the rapid distortion theory, and isotropic turbulence. It is obvious that
models which are calibrated to homogeneous flows cannot fully simulate flows with a
significant variation of eddy size, as we have shown to occur in the planar contraction.
The disagreement of the streamwise component by RDT and the contraction flow
confirms this conclusion. In addition, this disagreement clearly shows that the existing
models are not fully capable of modelling flows with strong irrotational rate of strain.
We believe that results presented in this study can help to calibrate proposed models
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for the rapid pressure–strain term for flows with strong rate of strain and, thus, spatial
inhomogeneity.
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